Monitoramento das Produções

Saiba como as informações sobre o zika-virus, a dengue e a febre chikungunya são apresentadas pela comunidade científica.

Por meio do sistema de monitoramento, você acessa os artigos publicados nos principais periódicos nacionais e internacionais. 

Você pode selecionar o período de busca, clicando abaixo. 

by Sarah M. Short, Emmanuel F. Mongodin, Hannah J. MacLeod, Octavio A. C. Talyuli, George Dimopoulos

The mosquito midgut microbiota has been shown to influence vector competence for multiple human pathogens. The microbiota is highly variable in the field, and the sources of this variability are not well understood, which limits our ability to understand or predict its effects on pathogen transmission. In this work, we report significant variation in female adult midgut bacterial load between strains of A. aegypti which vary in their susceptibility to dengue virus. Composition of the midgut microbiome was similar overall between the strains, with 81–92% of reads coming from the same five bacterial families, though we did detect differences in the presence of some bacterial families including Flavobacteriaceae and Entobacteriaceae. We conducted transcriptomic analysis on the two mosquito strains that showed the greatest difference in bacterial load, and found that they differ in transcript abundance of many genes implicated in amino acid metabolism, in particular the branched chain amino acid degradation pathway. We then silenced this pathway by targeting multiple genes using RNA interference, which resulted in strain-specific bacterial proliferation, thereby eliminating the difference in midgut bacterial load between the strains. This suggests that the branched chain amino acid (BCAA) degradation pathway controls midgut bacterial load, though the mechanism underlying this remains unclear. Overall, our results indicate that amino acid metabolism can act to influence the midgut microbiota. Moreover, they suggest that genetic or physiological variation in BCAA degradation pathway activity may in part explain midgut microbiota variation in the field.

PLOS Neglected Tropical Diseases -

by Barry W. Alto, Keenan Wiggins, Bradley Eastmond, Daniel Velez, L. Philip Lounibos, Cynthia C. Lord

Between 2014 and 2016 more than 3,800 imported human cases of chikungunya fever in Florida highlight the high risk for local transmission. To examine the potential for sustained local transmission of chikungunya virus (CHIKV) in Florida we tested whether local populations of Aedes aegypti and Aedes albopictus show differences in susceptibility to infection and transmission to two emergent lineages of CHIKV, Indian Ocean (IOC) and Asian genotypes (AC) in laboratory experiments. All examined populations of Ae. aegypti and Ae. albopictus mosquitoes displayed susceptibility to infection, rapid viral dissemination into the hemocoel, and transmission for both emergent lineages of CHIKV. Aedes albopictus had higher disseminated infection and transmission of IOC sooner after ingesting CHIKV infected blood than Ae. aegypti. Aedes aegypti had higher disseminated infection and transmission later during infection with AC than Ae. albopictus. Viral dissemination and transmission of AC declined during the extrinsic incubation period, suggesting that transmission risk declines with length of infection. Interestingly, the reduction in transmission of AC was less in Ae. aegypti than Ae. albopictus, suggesting that older Ae. aegypti females are relatively more competent vectors than similar aged Ae. albopictus females. Aedes aegypti originating from the Dominican Republic had viral dissemination and transmission rates for IOC and AC strains that were lower than for Florida vectors. We identified small-scale geographic variation in vector competence among Ae. aegypti and Ae. albopictus that may contribute to regional differences in risk of CHIKV transmission in Florida.

PLOS Neglected Tropical Diseases -

by Panayiota Kotsakiozi, Andrea Gloria-Soria, Adalgisa Caccone, Benjamin Evans, Renata Schama, Ademir Jesus Martins, Jeffrey R. Powell
Background Aedes aegypti, commonly known as “the yellow fever mosquito”, is of great medical concern today primarily as the major vector of dengue, chikungunya and Zika viruses, although yellow fever remains a serious health concern in some regions. The history of Ae. aegypti in Brazil is of particular interest because the country was subjected to a well-documented eradication program during 1940s-1950s. After cessation of the campaign, the mosquito quickly re-established in the early 1970s with several dengue outbreaks reported during the last 30 years. Brazil can be considered the country suffering the most from the yellow fever mosquito, given the high number of dengue, chikungunya and Zika cases reported in the country, after having once been declared “free of Ae. aegypti”. Methodology/Principal findings We used 12 microsatellite markers to infer the genetic structure of Brazilian Ae. aegypti populations, genetic variability, genetic affinities with neighboring geographic areas, and the timing of their arrival and spread. This enabled us to reconstruct their recent history and evaluate whether the reappearance in Brazil was the result of re-invasion from neighboring non-eradicated areas or re-emergence from local refugia surviving the eradication program. Our results indicate a genetic break separating the northern and southern Brazilian Ae. aegypti populations, with further genetic differentiation within each cluster, especially in southern Brazil. Conclusions/Significance Based on our results, re-invasions from non-eradicated regions are the most likely scenario for the reappearance of Ae. aegypti in Brazil. While populations in the northern cluster are likely to have descended from Venezuela populations as early as the 1970s, southern populations seem to have derived more recently from northern Brazilian areas. Possible entry points are also revealed within both southern and northern clusters that could inform strategies to control and monitor this important arbovirus vector.

PLOS Neglected Tropical Diseases -

by Gonçalo Seixas, Linda Grigoraki, David Weetman, José Luís Vicente, Ana Clara Silva, João Pinto, John Vontas, Carla Alexandra Sousa
Background Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. Methodology/Principal findings WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Conclusions/Significance Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.

PLOS Neglected Tropical Diseases -

by Jose L. Slon Campos, Monica Poggianella, Sara Marchese, Monica Mossenta, Jyoti Rana, Francesca Arnoldi, Marco Bestagno, Oscar R. Burrone

Dengue virus (DENV), the causative agent of dengue disease, is among the most important mosquito-borne pathogens worldwide. DENV is composed of four closely related serotypes and belongs to the Flaviviridae family alongside other important arthropod-borne viral pathogens such as Zika virus (ZIKV), West Nile virus (WNV) and Yellow Fever virus (YFV). After infection, the antibody response is mostly directed to the viral E glycoprotein which is composed of three structural domains named DI, DII and DIII that share variable degrees of homology among different viruses. Recent evidence supports a close serological interaction between ZIKV and DENV. The possibility of worse clinical outcomes as a consequence of antibody-dependent enhancement of infection (ADE) due to cross-reactive antibodies with poor neutralisation activity is a matter of concern. We tested polyclonal sera from groups of female Balb/C mice vaccinated with DNA constructs expressing DI/DII, DIII or the whole sE from different DENV serotypes and compared their activity in terms of cross-reactivity, neutralisation of virus infection and ADE. Our results indicate that the polyclonal antibody responses against the whole sE protein are highly cross-reactive with strong ADE and poor neutralisation activities due to DI/DII immunodominance. Conversely, anti-DIII polyclonal antibodies are type-specific, with no ADE towards ZIKV, WNV and YFV, and strong neutralisation activity restricted only to DENV.

PLOS ONE -

by Catherine L. Moyes, John Vontas, Ademir J. Martins, Lee Ching Ng, Sin Ying Koou, Isabelle Dusfour, Kamaraju Raghavendra, João Pinto, Vincent Corbel, Jean-Philippe David, David Weetman

Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.

PLOS Neglected Tropical Diseases -

by Jéssica Barreto Lopes Silva, Debora Magalhães Alves, Vanessa Bottino-Rojas, Thiago Nunes Pereira, Marcos Henrique Ferreira Sorgine, Eric Pearce Caragata, Luciano Andrade Moreira

Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium’s ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.

PLOS ONE -

Title: Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations
Authors: Lima, Dinair Couto; Madec, Yoann; Bersot, Maria Ignez; Campos, Stephanie Silva; Motta, Monique de Albuquerque; Santos, Flávia Barreto dos; Vazeille, Marie; Vasconcelos, Pedro Fernando da Costa; Oliveira, Ricardo Lourenço de; Failloux, Anna-Bella

Arca Fiocruz -

by Amir S. Siraj, Rachel J. Oidtman, John H. Huber, Moritz U. G. Kraemer, Oliver J. Brady, Michael A. Johansson, T. Alex Perkins

Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35°C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change.

PLOS Neglected Tropical Diseases -

by Cecilia de Almeida Marques-Toledo, Carolin Marlen Degener, Livia Vinhal, Giovanini Coelho, Wagner Meira, Claudia Torres Codeço, Mauro Martins Teixeira
Background Infectious diseases are a leading threat to public health. Accurate and timely monitoring of disease risk and progress can reduce their impact. Mentioning a disease in social networks is correlated with physician visits by patients, and can be used to estimate disease activity. Dengue is the fastest growing mosquito-borne viral disease, with an estimated annual incidence of 390 million infections, of which 96 million manifest clinically. Dengue burden is likely to increase in the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. The epidemiological dynamic of Dengue is complex and difficult to predict, partly due to costly and slow surveillance systems. Methodology / Principal findings In this study, we aimed to quantitatively assess the usefulness of data acquired by Twitter for the early detection and monitoring of Dengue epidemics, both at country and city level at a weekly basis. Here, we evaluated and demonstrated the potential of tweets modeling for Dengue estimation and forecast, in comparison with other available web-based data, Google Trends and Wikipedia access logs. Also, we studied the factors that might influence the goodness-of-fit of the model. We built a simple model based on tweets that was able to ‘nowcast’, i.e. estimate disease numbers in the same week, but also ‘forecast’ disease in future weeks. At the country level, tweets are strongly associated with Dengue cases, and can estimate present and future Dengue cases until 8 weeks in advance. At city level, tweets are also useful for estimating Dengue activity. Our model can be applied successfully to small and less developed cities, suggesting a robust construction, even though it may be influenced by the incidence of the disease, the activity of Twitter locally, and social factors, including human development index and internet access. Conclusions Tweets association with Dengue cases is valuable to assist traditional Dengue surveillance at real-time and low-cost. Tweets are able to successfully nowcast, i.e. estimate Dengue in the present week, but also forecast, i.e. predict Dengue at until 8 weeks in the future, both at country and city level with high estimation capacity.

PLOS Neglected Tropical Diseases -

Title: Vacina contra a Febre Amarela
Authors: Campos, Marina Bittencourt de Campos
Abstract: Apresentação de Reinaldo Menezes, consultor científico do Instituto de Tecnologia em Imunobiológicos. Durante a Oficina sobre a Febre Amarela promovida pela Fiocruz para jornalistas em 10 de abril de 2017.

Arca Fiocruz -

by Raquel Amorim, Abdelkrim Temzi, Bryan D. Griffin, Andrew J. Mouland

Zika virus (ZIKV), a member of the Flaviviridae family, is the most recent emerging arbovirus with pandemic potential. During infection, viruses trigger the host cell stress response, leading to changes in RNA translation and the assembly of large aggregates of stalled translation preinitiation complexes, termed stress granules (SGs). Several reports demonstrate that flaviviruses modulate the assembly of stress granules (SG). As an emerging pathogen, little is known however about how ZIKV modulates the host cell stress response. In this work, we investigate how ZIKV modulates SG assembly. We demonstrate that ZIKV negatively impacts SG assembly under oxidative stress conditions induced by sodium arsenite (Ars), a treatment that leads to the phosphorylation of eIF2α. By contrast, no measurable difference in SG assembly was observed between mock and ZIKV-infected cells treated with sodium selenite (Se) or Pateamine A (PatA), compounds that trigger eIF2α-independent SG assembly. Interestingly, ZIKV infection markedly impaired the phosphorylation of eIF2α triggered in Ars-treated infected cells, and the abrogation of SG assembly in ZIKV-infected cells is, at least in part, dependent on eIF2α dephosphorylation. These data demonstrate that ZIKV elicits mechanisms to counteract host anti-viral stress responses to promote a cellular environment propitious for viral replication.

PLOS Neglected Tropical Diseases -

by Miguel A. Saldaña, Kayvan Etebari, Charles E. Hart, Steven G. Widen, Thomas G. Wood, Saravanan Thangamani, Sassan Asgari, Grant L. Hughes

Zika virus (ZIKV), a flavivirus transmitted primarily by Aedes aegypti, has recently spread globally in an unprecedented fashion, yet we have a poor understanding of host-microbe interactions in this system. To gain insights into the interplay between ZIKV and the mosquito, we sequenced the small RNA profiles in ZIKV-infected and non-infected Ae. aegypti mosquitoes at 2, 7 and 14 days post-infection. ZIKA induced an RNAi response in the mosquito with virus-derived short interfering RNAs and PIWI-interacting RNAs dramatically increased in abundance post-infection. Further, we found 17 host miRNAs that were modulated by ZIKV infection at all time points. Strikingly, many of these regulated miRNAs have been reported to have their expression altered by dengue and West Nile viruses, while the response was divergent from that induced by the alphavirus Chikungunya virus in mosquitoes. This suggests that conserved miRNA responses occur within mosquitoes in response to flavivirus infection. This study expands our understanding of ZIKV-vector interactions and provides potential avenues to be further investigated to target ZIKV in the mosquito host.

PLOS Neglected Tropical Diseases -

by Dorit Maoz, Tara Ward, Moody Samuel, Pie Müller, Silvia Runge-Ranzinger, Joao Toledo, Ross Boyce, Raman Velayudhan, Olaf Horstick
Background Vector control is the only widely utilised method for primary prevention and control of dengue. The use of pyriproxyfen may be promising, and autodissemination approach may reach hard to reach breeding places. It offers a unique mode of action (juvenile hormone mimic) and as an additional tool for the management of insecticide resistance among Aedes vectors. However, evidence of efficacy and community effectiveness (CE) remains limited. Objective The aim of this systematic review is to compile and analyse the existing literature for evidence on the CE of pyriproxyfen as a vector control method for reducing Ae. aegypti and Ae. albopictus populations and thereby human dengue transmission. Methods Systematic search of PubMed, Embase, Lilacs, Cochrane library, WHOLIS, Web of Science, Google Scholar as well as reference lists of all identified studies. Removal of duplicates, screening of abstracts and assessment for eligibility of the remaining studies followed. Relevant data were extracted, and a quality assessment conducted. Results were classified into four main categories of how pyriproxyfen was applied: - 1) container treatment, 2) fumigation, 3) auto-dissemination or 4) combination treatments,–and analysed with a view to their public health implication. Results Out of 745 studies 17 studies were identified that fulfilled all eligibility criteria. The results show that pyriproxyfen can be effective in reducing the numbers of Aedes spp. immatures with different methods of application when targeting their main breeding sites. However, the combination of pyriproxyfen with a second product increases efficacy and/or persistence of the intervention and may also slow down the development of insecticide resistance. Open questions concern concentration and frequency of application in the various treatments. Area-wide ultra-low volume treatment with pyriproxyfen currently lacks evidence and cannot be recommended. Community participation and acceptance has not consistently been successful and needs to be further assessed. While all studies measured entomological endpoints, only two studies measured the reduction in human dengue cases, with inconclusive results. Conclusions Although pyriproxyfen is highly effective in controlling the immature stages of dengue transmitting mosquitoes, and–to a smaller degree–adult mosquitoes, there is weak evidence for a reduction of human dengue cases. More well designed larger studies with appropriate standardised outcome measures are needed before pyriproxyfen is incorporated in routine vector control programmes. Additionally, resistance to pyriproxyfen has been reported and needs investigation.

PLOS Neglected Tropical Diseases -

by Julien B. Z. Zahouli, Benjamin G. Koudou, Pie Müller, David Malone, Yao Tano, Jürg Utzinger
Background Failure in detecting naturally occurring breeding sites of Aedes mosquitoes can bias the conclusions drawn from field studies, and hence, negatively affect intervention outcomes. We characterized the habitats of immature Aedes mosquitoes and explored species dynamics along a rural-to-urban gradient in a West Africa setting where yellow fever and dengue co-exist. Methodology Between January 2013 and October 2014, we collected immature Aedes mosquitoes in water containers in rural, suburban, and urban areas of south-eastern Côte d’Ivoire, using standardized sampling procedures. Immature mosquitoes were reared in the laboratory and adult specimens identified at species level. Principal findings We collected 6,159, 14,347, and 22,974 Aedes mosquitoes belonging to 17, 8, and 3 different species in rural, suburban, and urban environments, respectively. Ae. aegypti was the predominant species throughout, with a particularly high abundance in urban areas (99.37%). Eleven Aedes larval species not previously sampled in similar settings of Côte d’Ivoire were identified: Ae. albopictus, Ae. angustus, Ae. apicoargenteus, Ae. argenteopunctatus, Ae. haworthi, Ae. lilii, Ae. longipalpis, Ae. opok, Ae. palpalis, Ae. stokesi, and Ae. unilineatus. Aedes breeding site positivity was associated with study area, container type, shade, detritus, water turbidity, geographic location, season, and the presence of predators. We found proportionally more positive breeding sites in urban (2,136/3,374, 63.3%), compared to suburban (1,428/3,069, 46.5%) and rural areas (738/2,423, 30.5%). In the urban setting, the predominant breeding sites were industrial containers (e.g., tires and discarded containers). In suburban areas, containers made of traditional materials (e.g., clay pots) were most frequently encountered. In rural areas, natural containers (e.g., tree holes and bamboos) were common and represented 22.1% (163/738) of all Aedes-positive containers, hosting 18.7% of Aedes fauna. The predatory mosquito species Culex tigripes was commonly sampled, while Toxorhynchites and Eretmapodites were mostly collected in rural areas. Conclusions/significance In Côte d’Ivoire, urbanization is associated with high abundance of Aedes larvae and a predominance of artificial containers as breeding sites, mostly colonized by Ae. aegypti in urban areas. Natural containers are still common in rural areas harboring several Aedes species and, therefore, limiting the impact of systematic removal of discarded containers on the control of arbovirus diseases.

PLOS Neglected Tropical Diseases -

by Carlos A. A. Brito, Fernanda Azevedo, Marli T. Cordeiro, Ernesto T. A. Marques Jr., Rafael F. O. Franca

PLOS Neglected Tropical Diseases -

by Sophie Yacoub, Trieu Huynh Trung, Phung Khanh Lam, Vuong Huynh Ngoc Thien, Duong Ha Thi Hai, Tu Qui Phan, Oanh Pham Kieu Nguyet, Nguyen Than Ha Quyen, Cameron Paul Simmons, Christopher Broyd, Gavin Robert Screaton, Bridget Wills
Background Dengue can cause plasma leakage that may lead to dengue shock syndrome (DSS). In approximately 30% of DSS cases, recurrent episodes of shock occur. These patients have a higher risk of fluid overload, respiratory distress and poor outcomes. We investigated the association of echocardiographically-derived cardiac function and intravascular volume parameters plus lactate levels, with the outcomes of recurrent shock and respiratory distress in severe dengue. Methods/Principle findings We performed a prospective observational study in Paediatric and adult ICU, at the Hospital for Tropical Diseases (HTD), Ho Chi Minh City, Vietnam. Patients with dengue were enrolled within 12 hours of admission to paediatric or adult ICU. A haemodynamic assessment and portable echocardiograms were carried out daily for 5 days from enrolment and all interventions recorded.102 patients were enrolled; 22 patients did not develop DSS, 48 had a single episode of shock and 32 had recurrent shock. Patients with recurrent shock had a higher enrolment pulse than those with 1 episode or no shock (median: 114 vs. 100 vs. 100 b/min, P = 0.002), significantly lower Stroke Volume Index (SVI), (median: 21.6 vs. 22.8 vs. 26.8mls/m2, P

PLOS Neglected Tropical Diseases -

by Ashley L. Fink, Katherine L. Williams, Eva Harris, Travis D. Alvine, Thomas Henderson, James Schiltz, Matthew L. Nilles, David S. Bradley

Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4). At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY.

PLOS Neglected Tropical Diseases -

by Stuart D. Dowall, Victoria A. Graham, Emma Rayner, Laura Hunter, Barry Atkinson, Geoff Pearson, Mike Dennis, Roger Hewson

Zika virus (ZIKV) falls into two lineages: African (ZIKVAF) and Asian (ZIKVAS). These lineages have not been tested comprehensively in parallel for disease progression using an animal model system. Here, using the established type-I interferon receptor knockout (A129) mouse model, it is first demonstrated that ZIKVAF causes lethal infection, with different kinetics of disease manifestations according to the challenge dose. Animals challenged with a low dose of 10 plaque-forming units (pfu) developed more neurological symptoms than those challenged with 5-log higher doses. By contrast, animals challenged with ZIKVAS displayed no clinical signs or mortality, even at doses of 106 pfu. However, viral RNA was detected in the tissues of animals infected with ZIKV strains from both lineages and similar histological changes were observed. The present study highlights strain specific virulence differences between the African and Asian lineages in a ZIKV mouse model.

PLOS Neglected Tropical Diseases -

by Daniel Adyro Martínez-Bello, Antonio López-Quílez, Alexander Torres-Prieto

The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.

PLOS Neglected Tropical Diseases -

by Mohamed Gomaa Kamel, Nguyen Tran Nam, Nguyen Huu Bao Han, Abd-Elaziz El-Shabouny, Abd-ElRahman Mohamed Makram, Fatma Abd-Elshahed Abd-Elhay, Tran Ngoc Dang, Nguyen Le Trung Hieu, Vu Thi Que Huong, Trinh Huu Tung, Kenji Hirayama, Nguyen Tien Huy
Background Dengue is one of the most common infectious diseases. The aim of this study was to systematically review acute disseminated encephalomyelitis (ADEM) and to represent a new case. Methodology/Principal findings We searched for articles in nine databases for case reports, series or previous reviews reporting ADEM cases in human. We used Fisher’s exact and Mann-Whitney U tests. Classification trees were used to find the predictors of the disease outcomes. We combined findings using fixed- and random-effects models. A 13-year-old girl was admitted to the hospital due to fever. She has a urinary retention. The neurological examinations revealed that she became lethargic and quadriplegic. She had upper limbs weakness and lower limbs complete paraplegia. Her status gradually improved after the treatment. She was nearly intact with the proximal part of her legs had a mild weakness in discharge. The prevalence of ADEM among dengue patients was 0.4% [95% confidence intervals (95% CI) 0.1–2.5%], all neurological disorders among dengue was 2.6% [95% CI 1.8–3.8%], and ADEM among neurological disorders was 6.8% [95% CI 3.4–13%]. The most frequent manifestation of ADEM was altered sensorium/consciousness (58%), seizures and urination problems (35%), vision problems (31%), slurred speech (23%), walk problems (15%) then ataxia (12%). There was a significant difference between cases having complete recovery or bad outcomes in the onset day of neurological manifestations being earlier and in temperature being higher in cases having bad outcomes (p-value 0.05). This was confirmed by classification trees which included these two variables. Conclusions/Significance The prevalence of ADEM among dengue and other dengue-related neurological disorders is not too rare. The high fever of ADEM cases at admission and earlier onset day of neurological manifestations are associated with the bad outcomes.

PLOS Neglected Tropical Diseases -

Title: High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas
Authors: Oliveira, Ricardo Lourenço de; Failloux, Anna-Bella

Arca Fiocruz -

by John M. Humphrey, Natalie B. Cleton, Chantal B. E. M. Reusken, Marshall J. Glesby, Marion P. G. Koopmans, Laith J. Abu-Raddad
Background The epidemiology of Chikungunya virus (CHIKV) in the Middle East and North Africa (MENA) is not well characterized despite increasing recognition of its expanding infection and disease burden in recent years. Methodology / Principal findings Following Cochrane Collaboration guidelines and reporting our findings following PRISMA guidelines, we systematically reviewed records describing the human prevalence and incidence, CHIKV prevalence/infection rates in vectors, outbreaks, and reported cases for CHIKV across the MENA region. We identified 29 human seroprevalence measures, one human incidence study, one study reporting CHIKV infection rates in Aedes, and nine outbreaks and case reports/series reported in the MENA from 1970–2015. Overall, anti-CHIKV antibody or reports of autochthonous transmission were identified from 10 of 23 countries in the MENA region (Djibouti, Egypt, Iraq, Iran, Kuwait, Pakistan, Saudi Arabia, Somalia, Sudan, and Yemen), with seroprevalence measures among general populations (median 1.0%, range 0–43%) and acute febrile illness populations (median 9.8%, range 0–30%). Sudan reported the highest number of studies (n = 11) and the highest seroprevalence among general populations (median 12%, range 0–43%) and undifferentiated acute febrile illness populations (median 18%, range 10–23%). CHIKV outbreaks were reported from Djibouti, Pakistan, Sudan, and Yemen. Conclusions / Significance Seroprevalence studies and outbreak reports suggest endemic transmission of urban cycle CHIKV in at least the Red Sea region and Pakistan. However, indications of seroprevalence despite a low quantity of CHIKV epidemiologic research from the region suggests that CHIKV transmission is currently underrecognized.

PLOS Neglected Tropical Diseases -

by Ian H. Mendenhall, Menchie Manuel, Mahesh Moorthy, Theodore T. M. Lee, Dolyce H. W. Low, Dorothée Missé, Duane J. Gubler, Brett R. Ellis, Eng Eong Ooi, Julien Pompon
Background Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. Methods We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. Results We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Conclusions Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore’s vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.

PLOS Neglected Tropical Diseases -

Title: Molecular Identification of Q Fever in Patients with a Suspected Diagnosis of Dengue in Brazil in 2013-2014
Authors: Mares-Guia, Maria Angélica M. M.; Rozental, Tatiana; Guterres, Alexandro; Ferreira, Michelle dos Santos; Botticini, Renato De Gasperis; Terra, Ana Kely Carolina; Marraschi, Sandro; Bochner, Rosany; Lemos, Elba R. S. de
Description: Published online feb. 2016. Ssubject to Restrictions below, author can archive publisher's version/PDF
Restrictions: - 12 months embargo

Arca Fiocruz -

by George G. Daaboul, David S. Freedman, Steven M. Scherr, Erik Carter, Alexandru Rosca, David Bernstein, Chad E. Mire, Krystle N. Agans, Thomas Hoenen, Thomas W. Geisbert, M. Selim Ünlü, John H. Connor

Light microscopy is a powerful tool in the detection and analysis of parasites, fungi, and prokaryotes, but has been challenging to use for the detection of individual virus particles. Unlabeled virus particles are too small to be visualized using standard visible light microscopy. Characterization of virus particles is typically performed using higher resolution approaches such as electron microscopy or atomic force microscopy. These approaches require purification of virions away from their normal millieu, requiring significant levels of expertise, and can only enumerate small numbers of particles per field of view. Here, we utilize a visible light imaging approach called Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows automated counting and sizing of thousands of individual virions. Virions are captured directly from complex solutions onto a silicon chip and then detected using a reflectance interference imaging modality. We show that the use of different imaging wavelengths allows the visualization of a multitude of virus particles. Using Violet/UV illumination, the SP-IRIS technique is able to detect individual flavivirus particles (~40 nm), while green light illumination is capable of identifying and discriminating between vesicular stomatitis virus and vaccinia virus (~360 nm). Strikingly, the technology allows the clear identification of filamentous infectious ebolavirus particles and virus-like particles. The ability to differentiate and quantify unlabeled virus particles extends the usefulness of traditional light microscopy and can be embodied in a straightforward benchtop approach allowing widespread applications ranging from rapid detection in biological fluids to analysis of virus-like particles for vaccine development and production.

PLOS ONE -

by José Ueleres Braga, Clarisse Bressan, Ana Paula Razal Dalvi, Guilherme Amaral Calvet, Regina Paiva Daumas, Nadia Rodrigues, Mayumi Wakimoto, Rita Maria Ribeiro Nogueira, Karin Nielsen-Saines, Carlos Brito, Ana Maria Bispo de Filippis, Patrícia Brasil
Background Zika is a new disease in the American continent and its surveillance is of utmost importance, especially because of its ability to cause neurological manifestations as Guillain-Barré syndrome and serious congenital malformations through vertical transmission. The detection of suspected cases by the surveillance system depends on the case definition adopted. As the laboratory diagnosis of Zika infection still relies on the use of expensive and complex molecular techniques with low sensitivity due to a narrow window of detection, most suspected cases are not confirmed by laboratory tests, mainly reserved for pregnant women and newborns. In this context, an accurate definition of a suspected Zika case is crucial in order for the surveillance system to gauge the magnitude of an epidemic. Methodology We evaluated the accuracy of various Zika case definitions in a scenario where Dengue and Chikungunya viruses co-circulate. Signs and symptoms that best discriminated PCR confirmed Zika from other laboratory confirmed febrile or exanthematic diseases were identified to propose and test predictive models for Zika infection based on these clinical features. Results and discussion Our derived score prediction model had the best performance because it demonstrated the highest sensitivity and specificity, 86·6% and 78·3%, respectively. This Zika case definition also had the highest values for auROC (0·903) and R2 (0·417), and the lowest Brier score 0·096. Conclusions In areas where multiple arboviruses circulate, the presence of rash with pruritus or conjunctival hyperemia, without any other general clinical manifestations such as fever, petechia or anorexia is the best Zika case definition.

PLOS ONE -

by Sheena Francis, Karla Saavedra-Rodriguez, Rushika Perera, Mark Paine, William C. Black IV, Rupika Delgoda

The emergence of novel diseases spread by the Aedes aegypti mosquito in Jamaica and the Caribbean, has prompted studies on insecticide resistance towards effective management of the vector. Though Jamaica has been using the organophosphate insecticide malathion in its vector control program for more than 30 years, resistance to the pesticide has not been tested in over a decade. We analyzed resistance to malathion and the pyrethroid insecticide, permethrin on mosquitoes collected across St. Andrew, Jamaica, and analyzed the molecular basis of resistance. The Center for Disease Control (CDC) bioassay revealed that Ae. aegypti mosquitoes from St. Andrew, Jamaica were resistant to permethrin (15 μg/bottle) with mortalities at 0–8% at 30 minute exposure time, while contact with malathion (50 μg/bottle) revealed ≤ 50% mortality at 15 minutes, which increased to 100% at 45 minutes. The standard susceptible New Orleans (NO) strain exhibited 100% mortality within15 minutes. The activities of multifunction oxidases and p-nitro phenyl-acetate esterases were significantly greater in most Jamaican populations in comparison to the NO strain, while activities of glutathione-S-transferase, acetylcholinesterase, α-esterase and ß-esterase activity were relatively equal, or lower than that of the control strain. The frequency of knockdown resistance mutations in the voltage dependent sodium channel gene were measured. All collections were fixed for Cys1,534 while 56% of mosquitoes were Ile1,016/Val1,016 heterozygotes, and 33% were Ile1,016 homozygotes. Aedes aegypti from St. Andrew Jamaica are resistant to permethrin with variations in the mode of mechanism, and possibly developing resistance to malathion. Continued monitoring of resistance is critically important to manage the spread of the vector in the country.

PLOS ONE -

by Mariana Ruiz Silva, José A. Aguilar Briseño, Vinit Upasani, Heidi van der Ende-Metselaar, Jolanda M. Smit, Izabela A. Rodenhuis-Zybert

Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large outbreaks and has expanded its territory causing millions of cases in Asia, Africa and America. The viruses share a common mosquito vector and during the acute phase cause similar flu-like symptoms that can proceed to more severe or debilitating symptoms. The growing overlap in the geographical distribution of these mosquito-borne infections has led to an upsurge in reported cases of DENV/CHIKV co-infections. Unfortunately, at present we have little understanding of consequences of the co-infections to the human host. The overall aim of this study was to define viral replication dynamics and the innate immune signature involved in concurrent DENV and CHIKV infections in human peripheral blood mononuclear cells (PBMCs). We demonstrate that concomitant infection resulted in a significant reduction of CHIKV progeny and moderate enhancement of DENV production. Remarkably, the inhibitory effect of DENV on CHIKV infection occurred independently of DENV replication. Furthermore, changes in type I IFN, IL-6, IL-8, TNF-α, MCP-1 and IP-10 production were observed during concomitant infections. Notably, co-infections led to a significant increase in the levels of TNF-α and IL-6, cytokines that are widely considered to play a crucial role in the early pathogenesis of both viral diseases. In conclusion, our study reveals the interplay of DENV/CHIKV during concomitant infection and provides a framework to investigate viral interaction during co-infections.

PLOS Neglected Tropical Diseases -

by Qu Cheng, Qinlong Jing, Robert C. Spear, John M. Marshall, Zhicong Yang, Peng Gong

Dengue is a fast spreading mosquito-borne disease that affects more than half of the population worldwide. An unprecedented outbreak happened in Guangzhou, China in 2014, which contributed 52 percent of all dengue cases that occurred in mainland China between 1990 and 2015. Our previous analysis, based on a deterministic model, concluded that the early timing of the first imported case that triggered local transmission and the excessive rainfall thereafter were the most important determinants of the large final epidemic size in 2014. However, the deterministic model did not allow us to explore the driving force of the early local transmission. Here, we expand the model to include stochastic elements and calculate the successful invasion rate of cases that entered Guangzhou at different times under different climate and intervention scenarios. The conclusion is that the higher number of imported cases in May and June was responsible for the early outbreak instead of climate. Although the excessive rainfall in 2014 did increase the success rate, this effect was offset by the low initial water level caused by interventions in late 2013. The success rate is strongly dependent on mosquito abundance during the recovery period of the imported case, since the first step of a successful invasion is infecting at least one local mosquito. The average final epidemic size of successful invasion decreases exponentially with introduction time, which means if an imported case in early summer initiates the infection process, the final number infected can be extremely large. Therefore, dengue outbreaks occurring in Thailand, Singapore, Malaysia and Vietnam in early summer merit greater attention, since the travel volumes between Guangzhou and these countries are large. As the climate changes, destroying mosquito breeding sites in Guangzhou can mitigate the detrimental effects of the probable increase in rainfall in spring and summer.

PLOS Neglected Tropical Diseases -